食道がんの HE 染色画像からのバーチャル免疫染色画像生成

田中敏幸节	高橋良輔†	坂下慎吾‡	石井源一郎‡
芐慶應義塾大学	理工学部	:国立が/	ん研究センター

キーワード:食道がん、HE染色、バーチャル免疫染色、画像処理

1 はじめに

病理医によるがんの診断は患者の身体から採取 した検体を染色することで行われる。まず、検体 に対して HE 染色を行いった結果に対して、癌の 診断を行い、治療方針を決定する。診断が難しい 場合には、隣接切片に対して免疫染色を行い、そ の結果からがんの治療方針を決定する。免疫染色 にはいくつかの種類があり、1 種類の免疫染色で 判断ができない場合には、複数の免疫染色を行う。 そのような状況のため、免疫染色が必要となった 場合には、多くの時間と診療コストが必要となる。 また、免疫染色を行うたびに隣接切片を消費して しまうので、その後の治療を考えると望ましいこ とではない。そこで、HE 染色画像を基にして画 像処理によって免疫染色と同様の染色を行う、バ ーチャル免疫染色が期待されている[1][2]。

同様の研究として,教師なし深層学習を基盤と した機械学習[3]による細胞組織の仮想的な染色 が試されている。しかしその研究では、HE 染色 を行ったスライス切片を洗浄して、同一切片に免 疫染色を行った画像を学習データとして利用して いる。病理検査の現状では、同一のスライス切片 に異なる染色を行うことは、病理医の負担が非常 に多くなるという問題点がある。また、多くの組 織からそのようなデータを少しずつ集めた場合、 組織ごとに染色状況が異なるため、機械学習のデ ータとしては予期せぬ結果が出る可能性がある。

そこで本研究では、隣接切片に対して HE 染色 画像と免疫染色画像を行った場合のバーチャル免 疫染色の可能性を追求することとした。隣接切片 を利用するため、形状の違いおよび位置のずれの 影響を考慮しなければならない。そこで、染色領 域の色空間情報および形状情報を利用した位置合 わせの後で、機械学習を用いた方法と画像処理を 用いた方法を提案する。ここでは、研究対象とし て、AE1/AE3, Desminの2種類に対するバーチャ ル免疫染色画像の生成を目指す。

2 方法

2.1 本研究で用いる画像

以下の Fig. 1~Fig. 3 に本研究で用いた HE 染色 画像と AE1/3 および Desmin の 2 種類の免疫染色 画像を示す。画像は NanoZoomer [6] によってスキ ャンされており、解像度は 226 nm/pixel、取得時 のレンズ倍率は 40 倍である。画像サイズは HE 染色画像が 28875×3929 pixel、Desmin 免疫染色画 像が 27394×2850 pixel、AE1/AE3 免疫染色画像が 28347×2797 pixel である。

Fig. 2 免疫染色画像 (AE1/AE3)

Fig. 3 免疫染色画像 (Desmin)

2.2 提案手法

本研究で扱う免疫染色画像において、AE1/AE3 により染色される領域は比較的大きな領域で染色 され、Desmin は比較的小さな領域が染色されると いう特徴がある。そのため、同一のアルゴリズム を使ってバーチャル免疫染色を行うことができな い。本稿で利用する、AE1/AE3 に対する手法の概 略を Fig. 4 に、Desmin に対する手法の概略を Fig. 5 に示す。提案手法では、HE 染色画像の RGB 値 による色情報を利用し、染色領域の推定を行う。

(1) AE1/AE3 に対する手法

AE1/AE3 によって染色される領域は、細胞核が 密集している傾向にある。その情報を利用するた め、スーパーピクセル[4]を利用して、領域内の平 均画素値によって、背景領域、染色領域、非染色 領域の3分類を行う。ラベリングや閾値処理を用 い、最後にマスク画像を利用して染色領域を推定 する。

Fig.4 色情報による画像生成手順

(2) Desmin に対する手法

Desmin に対する手法では、はじめに I.染色領域、 II.非染色領域における細胞核領域、III.非染色領域 の細胞核以外の領域において、任意に 100 点ずつ を取得して、HSV 成分画像のヒストグラムを作成 する。ヒストグラムに基づいた閾値設定、穴埋め 処理によるノイズ除去の後、スーパーピクセルを 用いて染色領域の推定を行う。

2.3 GAN による学習・画像生成

(1) GAN のための前処理の概要

提案手法との比較として、深層学習を用いてHE 染色と免疫染色の組を学習させて、免疫染色画像 を生成する方法を示す。深層学習のアルゴリズム としては、敵対的生成ネットワーク (GAN) [5][6] を利用する。Fig. 6 に示すように、隣接切片に対して HE 染色画像と免疫染色画像を行った画像を 用意する。それらの画像の対象領域の位置合わせ を行い、各画像の同一位置から 1024×1024 pixel の サイズのパッチを切り出す。前処理として、背景 領域の画像を取り除き、GAN による学習を行う。

Fig.6 GAN による画像の生成手順

(2) 画像の位置合わせ

HE 画像とその隣接切片における免疫染色画像 は検体の隣接切片に対して染色を行ったものであ り、位置や形状が完全に一致することはない。そ のため、相互情報量と呼ばれる画像の類似度を示 す指標を導入し、その相互情報量が最大になるよ うに画像の変換を行う。画像の変換には拡大・縮 小、平行移動、回転を行列変換により行うアフィ ン変換を用いる。

(3) GAN による学習・画像生成

本研究では、AE1/AE3 で 52 枚、Desmin で 50 枚 の画像データセットを利用し、学習データとテス トデータを 8:2 の割合で分けて学習を行う。GAN にはいろいろなモデルがあるが、ここでは pix2pix [7]-[9]を用いる。

3 結果·考察

3.1 提案手法の生成結果

バーチャル免疫染色を行った結果を、Fig. 7, Fig. 8 に示す。Fig. 7 の AE1/AE3 の結果においては、大ま かな染色位置は推定が可能であるが、生成画像はぼ やけたものとなった。Fig. 8 の Desmin の結果におい ては、染色位置の推定に失敗している。

Fig. 7 Example of images generated by RGB (AE1/AE3)

Fig. 8 Example of images generated by RGB (Desmin)

3.2 GAN による生成結果

Fig. 9に GAN (pix2pix) を用いてバーチャル免 疫染色を行った例を示す。ここでは、Desmin の場 合を示している。一番上の段が入力画像、二段目 が pix2pix によるバーチャル免疫染色画像、三段 目が実際に隣接切片を免疫染色した画像となって いる。二段目と三段目の染色結果を一致させるこ とが本研究の目標となっている。

図を見てわかるように、pix2pix によるバーチャ ル免疫染色では、わずかに染色されている部分は あるが、実際とはかなり違っている。大きな理由 として、pix2pix は画素ごとの対応関係を学習する システムであるのに対して、隣接切片では画素レ ベルでの位置対応ができていないため、学習精度 が悪くなっていることがあげられる。また、バー チャル免疫染色の失敗領域として、欠陥が多かっ たことがあり、欠陥の形状特徴を考慮して、楕円 形の領域をサイズを考慮して削除した。それによ って余分な領域の抽出がなくなった半面、染色領 域が少なくなってしまった。

Fig. 9 Example of image generated by GAN (Desmin)

4 おわりに

本研究では、提案手法として色情報および形状 情報を利用したDesminおよびAE1/AE3における バーチャル免疫染色画像の作成を行った。Desmin では, HSV, L*a*b*, YCbCrの3種類の色空間で染色 領域の推定を行った。はじめにヒストグラムから 設定した閾値でpixelの選定を行い、モルフォロジ ー変換、スーパーピクセル、ラベリングを利用し てノイズの除去を行った。その後、色情報のみで 取り除くことの難しい血管領域について、各領域 に対して輪郭検出および楕円の近似を行い、形状 を評価することで削除を行った。推定した染色領 域に対して色変換を行うことで画像の生成を行っ た。AE1/AE3では、pixel単位での色情報の違いが 見られず、領域単位での色情報の違いが見られた ため、スーパーピクセルによる領域の3分類を行っ た。分類した領域に対して領域の色情報およびラ ベリングによって染色領域の推定を行い、色変換 によって画像の生成を行った。

また、GAN (pix2pix) と呼ばれる機械学習アル ゴリズムを用いて画像の生成を行った。データセ ットとしてHE染色画像と隣接切片の免疫染色画 像の位置合わせを行い、対応する領域をペアで学 習させることで画像の生成を行った。

生成画像の精度の評価は病理医の評価を基に行った。提案手法ではDesminにおいてはHSV色空間で作成したものが総合的な評価は高い結果であった。比較手法では、Desminにおいては染色領域が小さいために、HE染色画像と免疫染色画像の形状の違い、位置のずれの影響を受けやすく、理想的な学習を行うことができず、染色領域の推定には失敗しているといえる。AE1/AE3では染色領域が大きいため、一定の染色領域の推定が可能であった。また、提案手法と比較手法では、Desminにおいては提案手法の方が染色領域の推定精度が高く、AE1/AE3においては比較手法の方が高い結果であった。

参考文献

- 藤谷真之,望月義彦,飯塚里志,シモセラ エドガー,石川博,"病理画像の自動染色変 換",情報処理学会技術研究報告, Vol.2017-CVIM-207, No.29, pp. 1-8 (2017).
- [2] Z. Xu, *et al.*, "GAN-based Virtual Re-Staining: A Promising Solution for Whole Slide Image Analysis", arXiv:1901.04059v1 (2019).
- [3] Ronneberger, P. Fischer, T. Brox, "U-net: Convolutional Networks for Biomedical Image Segmentation.", International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Cham, pp. 234-241, (2015).
- [4] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, "SLIC Superpixels.", EPFL Technical Report, No.149300, (2010).
- [5] D. Mattes, H. Vesselle, T. Lewellen, W. Eubank, *et al.*, "Non-rigid multimodality image registration", Medical Imaging 2001: Image Proceedings. SPIE Publications, pp.1609-1620 (2001).
- [6] M. Styner, C. Brechbuehler, *et al.*, "Parametric estimate of intensity inhomogeneities applied to MRI", IEEE Transactions on Medical Imaging, Vol. 19, pp.153-165 (2000).

- [7] Goodfellow, *et al.*, "Generative adversarial nets" NIPS, Proceedings of the 27th International Conference on Neural Information Processing Systems, pp2672-2680 (2014).
- [8] M. Mirza, S. Osindero, "Conditional Generative Adversarial Nets", arXiv:1411.1784v1 (2014).
- [9] P. Isora, et al., "Image-to-Image Translation with Conditional Adversarial Networks", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125-1134 (2017).